An Assessment of Risks due to Asbestos Containing Materials on Tracks

Measurement of Concentrations, extrapolation from sampling period, and predictions of risks to health

Alan Jones, John Cherrie, Hilary Cowie, Anne Soutar
Introduction

• Some tracks have surface material that was discarded waste product from an asbestos cement factory;
• The tracks are in a rural area, and the amount of asbestos material is variable from track to track;
• Several previous investigations;
• Further information was needed by the responsible public authorities;
• Several kilometres of tracks (public rights of way and farm tracks).
Institute of Occupational Medicine IOM

- Formed 1969 linked with British Coal
- Fully independent 1990
 - Governors Russel Griggs, Frank Davies
- Charitable status -not for profit
- Research, consultancy, training
- 130 staff
- Turnover approx £7M pa
IOM Mission

For the benefit of those at work and in the community

- to provide quality research, consultancy and training services in occupational and environmental health, hygiene and safety

- to maintain an independent centre of excellence applying scientific problem-solving methods in the workplace and in the wider environment
IOM and asbestos

• Fibre measurement:
 • full range of laboratory analyses;
 • development of methods (EC and HSE projects), asbestos in air (size selective sampling), asbestos in soils;
• Quantitative risk assessment, for risks arising from asbestos exposure.
• Operation of international fibre counting proficiency testing schemes (e.g. with Italian laboratories participating in the AFRICA);

www.iom-world.org
IOM Study

- Commissioned by the Public Authorities
 - Cambridgeshire County Council and Cambridgeshire District Council
- IOM asked to determine the exposure to asbestos and consequent risk to health
- Six tracks investigated
 - Included the tracks identified previously as being highest priority (most asbestos, nearby residents, and used by vehicles)
Sampling strategy

- Number of samplers per track ranged from 2 to 10 (according to track length, number of houses etc);
- Total of 25 samplers;
- Sampled over 4 periods of 7-days, i.e. one month of sampling;
- Flows checked every 24 hours and external batteries changed;
- Sample filters collected after 7 days of sampling.
Example of sampling site on tracks
Dust on the tracks
Air samplers on both sides of the tracks
Air Sample analysis

- Samples analysed by scanning electron microscopy (SEM) for asbestos fibres
- Airborne asbestos Concentrations calculated from each sample
- Overall average for each track (from 2 to 10 samplers) gave average for each week
- Concentrations, weekly averages, for 4 weeks in September 2004
- Only four tracks had measurable levels for all four weeks
Relative changes in concentration for each week at four tracks in September 2004

- Moor End Lane, Shepreth
- Shedbury Lane
- Newling Non-lets
- London Way
- Average
- Predicted
Simple model of weather dependence

Relative levels…

• negligible on wet days compared to dry days;
• lower on a dry day preceded by a wet day compared to a dry day preceded by a dry day;
• increase with sunshine drying the track surface, but by less than linear proportion to hours of sunshine;
• inversely dependent on the average wind speed, due to dilution.
• Formula is on page 15 of the report (http://www.iom-world.org/pubs/IOM_TM0507.pdf)
Checking modelled concentration

<table>
<thead>
<tr>
<th>Track and study</th>
<th>Weather factor relative to Week 1 of Sept 2004</th>
<th>Asbestos fibre concentration fibres/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted</td>
<td>Measured</td>
</tr>
<tr>
<td>Moor End Lane, IOM Pilot Study (2 samples)</td>
<td>0.19</td>
<td>0.0013</td>
</tr>
<tr>
<td>London Way, June 2001 HSL’s measurements</td>
<td>1.44</td>
<td>0.00025</td>
</tr>
</tbody>
</table>
Extrapolation to annual average concentrations

<table>
<thead>
<tr>
<th>Track</th>
<th>Measured in Week 1</th>
<th>Predicted 2004 year</th>
<th>Predicted 2001 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moor End Lane</td>
<td>0.007</td>
<td>0.0019</td>
<td>0.0017</td>
</tr>
<tr>
<td>Shedbury Lane</td>
<td>0.0022</td>
<td>0.00061</td>
<td>0.00053</td>
</tr>
<tr>
<td>Newling Non-lets</td>
<td>0.0019</td>
<td>0.00053</td>
<td>0.00046</td>
</tr>
<tr>
<td>London Way</td>
<td>0.0017</td>
<td>0.00047</td>
<td>0.00041</td>
</tr>
<tr>
<td>Hill Top Farm</td>
<td>0.00069</td>
<td>0.00019</td>
<td>0.00017</td>
</tr>
<tr>
<td>Whaddon Estate (Fountain) Farm</td>
<td>0.00064</td>
<td>0.00018</td>
<td>0.00015</td>
</tr>
</tbody>
</table>
Summary of average concentration

- **Annual Average concentration estimates**
 - 0.0002 fibres/ml (on 2 of the 6 tracks)
 - 0.0005 fibres/ml (on 3 of the 6 tracks)
 - 0.002 fibres/ml, highest, (on 1 of the 6 tracks)

- **HEI - comparison**
 - 0.0001 f/ml outdoor urban
 - 0.00001 f/ml outdoor rural
 - 0.00002 f/ml in well-maintained building
Predicted risk to Health

- Epidemiological model of risk of mesothelioma, concentration, duration, and age
- Epidemiological model of risk of lung cancer due to asbestos exposure (cumulative exposure), risk multiplicative with risk from smoking
- “Worst case” scenario (equivalent to person being at the trackside for half of every day)
- “Realistic” exposure scenario (based on interview information from a few local residents)
- This presentation shows the mesothelioma risk predictions
Risks of mesothelioma for hypothetical exposure scenario

- For worst case, predicted risks of mesothelioma ranged from
 - 4 in 100,000 (lowest track) to
 - 40 in 100,000 (highest concentration track).
- For “realistic case” exposure scenario, highest predicted risks range from:
 - 0.4 in 100,000 (lowest track) to
 - 40 in 100,000 (highest concentration track).
- With resident population (houses on tracks) of about only 100 residents, deaths from this cause are unlikely.
Conclusions

- Risk predictions enabled public authorities to decide on appropriate actions, based on levels of risk that are regarded as “acceptable”.

- Modelling of the effect of the weather enabled extrapolation from one month of sampling to annual average concentrations – and the independent results from two other periods supported the extrapolation.

- Extrapolation might not work everywhere but the principles are widely applicable.
Thanks

- To Cambridgeshire County Council and South Cambridgeshire District Council for funding the study;
- To colleagues;
- To you for your attention.
Concentration in air vs concentration in dust on five sampling positions

![Graph showing the concentration of asbestos in air versus concentration in dust on five sampling positions.](image)